Modeling Ovarian Cancer Multicellular Spheroid Behavior in a Dynamic 3D Peritoneal Microdevice.
نویسندگان
چکیده
Ovarian cancer is characterized by extensive peritoneal metastasis, with tumor spheres commonly found in the malignant ascites. This is associated with poor clinical outcomes and currently lacks effective treatment. Both the three-dimensional (3D) environment and the dynamic mechanical forces are very important factors in this metastatic cascade. However, traditional cell cultures fail to recapitulate this natural tumor microenvironment. Thus, in vivo-like models that can emulate the intraperitoneal environment are of obvious importance. In this study, a new microfluidic platform of the peritoneum was set up to mimic the situation of ovarian cancer spheroids in the peritoneal cavity during metastasis. Ovarian cancer spheroids generated under a non-adherent condition were cultured in microfluidic channels coated with peritoneal mesothelial cells subjected to physiologically relevant shear stress. In summary, this dynamic 3D ovarian cancer-mesothelium microfluidic platform can provide new knowledge on basic cancer biology and serve as a platform for potential drug screening and development.
منابع مشابه
Assessment of Ovarian Cancer Spheroid Attachment and Invasion of Mesothelial Cells in Real Time
Ovarian cancers metastasize by shedding into the peritoneal fluid and dispersing to distal sites within the peritoneum. Monolayer cultures do not accurately model the behaviors of cancer cells within a nonadherent environment, as cancer cells inherently aggregate into multicellular structures which contribute to the metastatic process by attaching to and invading the peritoneal lining to form s...
متن کاملPaclitaxel Resistance and Multicellular Spheroid Formation Are Induced by Kallikrein-Related Peptidase 4 in Serous Ovarian Cancer Cells in an Ascites Mimicking Microenvironment
High tumor kallikrein-related-peptidase 4 (KLK4) levels are associated with a poor outcome for women with serous epithelial ovarian cancer (EOC), for which peritoneal dissemination and chemoresistance are key events. To determine the role of KLK4 in these events, we examined KLK4-transfected SKOV-3 and endogenous KLK4 expressing OVCA432 cells in 3-dimensional (3D) suspension culture to mimic th...
متن کاملp70 S6 kinase drives ovarian cancer metastasis through multicellular spheroid-peritoneum interaction and P-cadherin/β1 integrin signaling activation
Peritoneal dissemination as a manifestation of ovarian cancer is an adverse prognostic factor associated with poor clinical outcome, and is thus a potentially promising target for improved treatment. Sphere forming cells (multicellular spheroids) present in malignant ascites of patients with ovarian cancer represent a major impediment to effective treatment. p70 S6 kinase (p70S6K), which is a d...
متن کاملVersican regulates metastasis of epithelial ovarian carcinoma cells and spheroids
BACKGROUND Epithelial ovarian carcinoma is a deadly disease characterized by overt peritoneal metastasis. Individual cells and multicellular aggregates, or spheroids, seed these metastases, both commonly found in ascites. Mechanisms that foster spheroid attachment to the peritoneal tissues preceding formation of secondary lesions are largely unknown. METHODS Cell culture models of SKOV-3, OVC...
متن کاملNear infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer.
Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of intravenously injected antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein, we evaluate the efficacy of NIR-PIT in a mouse model of disseminated peritoneal ovarian cancer. In vitro and in vivo experiments were conduct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 120 شماره
صفحات -
تاریخ انتشار 2017